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Abstract 

A new technique to calculate tree-level multi-gluon amplitudes ia presented. The basic idea in to 
expand the full amplitude in terms of dual diagrams. Each dual diagram is the combination with 
proper weights of some set of Feynman diagrams. The dual amplitudes are invariant under cyclic 
permutations of the external legs and are gauge invariant. Powerful identities relate different non- 
cyclic permutations with one another, dramatically simplifying the calculation of the full amplitude. 
The factor&a&an of the dual amplitudes on the two particle channels ia explicit and guaranteea the 
cancellation of the double poles for collinear aingularitiea at the amplitude level. The color algebra 
‘factors’ out and the sum over colon can be performed independently of the kinematics. Relatively 
compact analytic expressions for processes like 2 gluons+4 gluons can then be obtained. 
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1 The Dual Expansion 

The calculation of multi-&on amplitudes is one of the most challenging technical problems in pertur- 

bative QCD. Many tools have been developed trying to get simple analytic expressions for these kind 

of processes, but none seems to be the most appropriate yet. When calculating the Feynman diagrams 

contributing to a given reaction, many cancellations among the various terms are expected to occur on 

the basis of gauge invariance. A systematic procedure to efficiently isolate gauge invariant subsets of 

diagrams, however, has always been missing. 

In this talk I will present a new technique that was recently developed in collaboration with S. Parke 

and Z. Xu [l], and that to our opinion provides a very efficient way of carrying out these calculations. 

The idea for this work came from the proposal, made by Parke and Taylor (21, that to the leading order 

in the l/N expansion the amplitude squared for the scattering of two positive-helicity gluons into n - 2 

positive-helicity gluons takes the form 131: 

where all the gluons are taken as outgoing, c,(g, N) = g *“-‘N”-2(NZ - 1)/2”-’ and the sum is over 

all the non-cyclic permutations of 1,2,. . . , n. 

It seems natural to interpret this expression as the square of some dual amplitude. The fact that the 

amplitude squared takes such a simple form if written in this fashion suggests that finding a procedure 

to make this duality manifest at the matrix element level may significantly simplify the calculations. 

This is the idea we tried to pursue. I will now introduce the concept of dual perturbation theory, pointing 

out scune of its most remarkable properties relevant to this problem. 

Dual perturbation theory [4] is built out of dual diagrams. A dual diagram (fig.1) is invariant under 

cyclic permutations of the external legs, and the full amplitude for the scattering of n particles is given 

by: 

A, = c tr(XIXz...X,) A(1,2 ,..., n). (2) 
prrnl 

A(l, 2,. . ., n) represents the amplitude corresponding to the dual diagram with the ordering (1,2,. . ., n) 

of the external legs. The X matrices are the matrices of the symmetry group in the fundamental 

representation. We will choose our gauge group to be SU(N), and the external particles will transform 

as the adjoint representation of SU(N). 
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Figure 1: A dual diagram. 
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Figure 2: Dual Ward-Identity. 

Probably the best way to think of dual diagrams and dual amplitudes is to think in terms of strings 

[.?I. Each dual diagram is then represented by a string diagram, and the amplitude can be obtained by 

using the usual Koba-Nielsen formula. The traces of X matrices are just the Ghan-Paton factors. The 

fundamental property of these dual amplitudes is that in the limit where the string tension (or, if you 

prefer, the Regge slope) goes to zero, A, reproduces the Yang-Mills amplitude. This implies that a dual 

representation for a multi-gluon amplitude always exists. 

Independently of the zero-slope limit being taken, a dual amplitude enjoys remarkable properties. 

These properties suggest that a Yang-Mills amplitude expressed in terms of dual amplitudes will aSsume 

a particularly simple form. 

First of all A(1,2,. . ., n) is gauge invariant. This means that for each external gluon within each 

dual diagram that forma the full amplitude we can choose a suitable parametrization of the polarization. 

Hence, breaking up the full amplitude in dual amplitudes gives rise to a systematic procedure for 

identifying gauge invariant subsets of diagrams. The gauge invariance allows us to obtain the dual 

amplitude corresponding to a non-cyclic permutation of (1,2,. . ., n) that mixes same-h&city gluons 

by just permuting the indices of the momenta that are contained in the amplitude. This saves us 

from having to calculate all of the (n - 1)!/2 d’ff 1 went dual diagrams that contribute to A,. Some of 

the permutations that interchange gluons with different helicities may be obtained through the Ward 

identity graphically represented in fig.2. The dual diagrams do not contain the color factors, so it would 

be very difficult to recover this identity in the Feynman diagram expansion. 

The dual expansion, furthermore, gives rise to the following representation for the amplitude squared: 

1 J-4(1,2 ,..., 41’ + O(N-*) . 
per* 

The leading terms in the expansion come from the square of the single dual amplitudes corresponding to 

the various non-cyclic permutations, while the 0 (iVez) t erms represent the interference among different 

permutations. The fact that the non-leading terms come from the interference of dual diagrams with 

different orderings of the external legs can be easily understood by realizing that these interferences can 

be represented by non-planar diagrams I. It is clear that the Parke and Taylor expression (eq.(l)) has 

‘Strictly speaking the planar diagmm (i.e. the aquarea al the dual amplitudes) generate the leading term (N”) together 
with subleading terms, aI the order N”-’ at least. The moat important tern in the interference will then conspire with 
the O(N”-‘) terms in the mm of squares to give rise to the atructwe exhibited in equation (3). Therefore, what I defined 
interference above ia actually a mixture of true interference terms with subleading incoherent terms. 
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the form of equation (3). What is remarkable in this representation of the amplitude squared is the fact 

that the leading part is a sum of squares. This has a very important immediate consequence: any pole 

that must cancel in the full amplitude squared will have to be cancelled, at the matrix element level, 

within each dual diagram. If it were not so, at the order N” the cancellation could not occur. 

The best example of this is the case of collinear singularities. In calculating the Feynman diagrams 

for a certain process, propagators give rise to simple poles in the kinematical invariants sij = (pi + pi)‘. 

When squaring the amplitude, one would then naively expect double poles in Sij to appear. However 

we know that these singularities are forbidden, only simple poles for collinear gluons are allowed [6]. In 

general this property is rather obscure at the matrix element level, and becomes apparent only after 

taking the square. Here many cancellations occur among terms from various Feynman diagrams, and 

quite mysteriously they conspire to fully cancel the double poles. My previous argument indicates 

however that if we were calculating the amplitude by using a dual expansion, these cancellations should 

be explicit already at the matrix element level. This suggests that the final expression for the amplitude 

will be much more simple than in general, because of the number of terms that we know in advance 

will have to disappear. 

The last point that I want to make before explaining how to carry out this program is the following: 

the dual expansion gives a systematic procedure to calculate amplitudes to the leading order in N. For 

practical purposes, where the group is SU(3), the subleading part contributes only a few percent of the 

complete result. This is comparable with the contribution of the diagrams of the next order in a,tronp, 

and can be neglected unless the radiative corrections are calculated too. This would simplify the task 

of calculating the square, because to the leading order in N only the sum of the single dual amplitudes 

squared is needed, the interference being suppressed. 

2 Reconstructing Feynman Diagrams 

One possible way to implement this procedure is to directly use the Koba-Nielsen representation of 

the amplitude in the zero-slope limit. It turns out, however, that when the number of gluons exceeds 

five the integration over the Koba-Nielsen variables is quite hard, and the expansion of the exponent 

containing the polarizations generates too many terms to make this route appealing. As an alternative, 

we decide to reorganize the Feynman diagram expansion in such a way as to make it look like the 

zero-slope limit of the dual expansion. In the zero-slope limit a dual amplitude gives rise to a sum of 

terms that exhibit the poles one would expect from the propagators present in the Feynman diagrams. 

It is possible to interpret these terms as portions of field theory Feynman diagrams. As an example we 

may take the four-gluon process (fig.3). A(l, 2,3,4), which in th IS case is nothing but the Veneziano 

amplitude, exhibits an s-pole and a t-pole singularity in the zero-slope limit. When these terms are 

combined with those arising from the two additional permutations (1,3,2,4) and (2,1,3,4), the sum of the 

three Feynman diagrams corresponding to the a,t and u poles is reproduced. Of course the non-singular 

contact interaction is generated aa well. Our suggestion is to follow this route in the opposite direction: 

we write down all the possible Feynman diagrams relevant to a certain process and we isolate those 

that would appear in the zero-slope limit of the dual diagram corresponding to some ordering. Then 

we sum up with the proper weights the Feynman diagrams in this group, obtaining the dual amplitude 
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Figure 3: The zero-slope limit of a dual diagram. 
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Figure 4: A six-gluon diagram. 

corresponding to the given ordering. It is our claim that this object will be particularly simple to 

calculate and will give rise to a compact expression for the full amplitude. 

To find which Feynman diagrams will contribute to a given dual diagram it is sufficient to study the 

color structure of the diagrams. As an example, take the six-gluon diagram in fig.4. The indices a,b,..J 

are color indices. The color structure of the diagram is given by CX,Y,z f”bXfXcYfYdZfZc~. It is easy 

to expand thii factor in terms of X matrices, obtaining the following result: 

C ,abXfXcYfYdZpZef = 
tr [[xa,X"],XC][Xd, [XC, A']] + tr [[A',Y],Xd][Y, [Xb,Y]]. (4) 

X.YJ 

These are exactly the color factors that appear in the dual expansion. The commutators of X matrices 

can be expanded, and this particular Feynman diagram will then contribute to all the dual diagrams 

whose ordering appears in the expansion. The trace with the reversed ordering accounts for the dual 

diagrams with the reverse ordering. The plus sign is consistent with the fact that A(l, 2,. . ., n) = 

(-)“A(n,n - l,.. ., 1). In conclusion, to find the Feynman diagrams that contribute to a given dual 

diagram we just have to isolate the diagrams whose color factors contain a trace of X matrices in the 

desired order. This procedure can be systematically followed for each n. 

3 Five- and Six-Gluon Processes 

In this section I will give a few examples of how this technique works. We choose to represent the 

gluon polarization with a pair of Weyl spinors, &s recently proposed in [i’]. This choice represents an 

improvement of the representation first introduced in [8]. Following this reference we employ the helicity 

amplitude formalism, i.e. we calculate amplitudes with given fixed external helicities. At the end we 

will sum over all the admissible h&city configurations. 

We define the kets Ipf) to be massless spinors with momentum p and h&city + and the braa (q+i to be 

the dual of a massless spinor with momentum q and helicity 3~. In this way the two helicity eigenstates 
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Figure 5: In a proper gauge, these are the only diagrams contributing to the dual amplitude 
A(l-,2-,3+,4+,5+). 

of a gluon with momentum p are given by: 

gp) = (v-h’lP-) 
ai ’ 

c”(p) = (q+lT’IP+) 
fi/z(qp) * 

The spinor product (qp) is the scalar quantity obtained by multiplying (q-1 with Ipf). The momen- 

tum q is arbitrary, provided it satisfies q2 = 0 and q. p # 0. This freedom in choosing what we will call 

the reference momentum stems from the gauge invariance of the polarization. Within a dual diagram, 

which is gauge invariant, we can assign a different reference momentum to each external gluon. 

The only property of the spinor products that I want to recall here is the following: I(qp)p)l* = 2(p. q). 

In this sense, up to a phase, a spinor product has to be thought of as the square root of the invariant 

allp. Many other properties of the spinor products[‘l], mainly due to Fierz identities, are very useful in 

simplifying the calculations. 

An a first example of how this technique works, let me study the five-gluon amplitude [9]. There is 

only one independent helicity amplitude that contributes, the one with three positive and two negative 

helicities. Let us start by calculating the dual diagram with the ordering (l-,2-,3+,4+, Sf). The 

obvious notation indicates the ordering of momenta around the loop and the helicity of the gluon with 

the given momentum. We will choose the reference momentum of the gluons 1 and 2 to be ps, and 

the reference momentum of the gluons 3, 4 and 5 to be ~1. This is allowed by gauge invariance, and 

amounts to a gauge choice. It is easy to see that in this gauge all of the Feynman diagrams contributing 

to this process with the four-gluon contact interaction vanish. This is because the only products of 

polarizations that do not vanish are c-(2). c+(3) and c-(2). c+(4), as is easy to check by using the 

proper Fierz identities. As a consequence of this, also all the diagrams where the gluon 1 and the gluon 

5 are attached to the same vertex can be easily seen to vanish. By using the above prescription for 

isolating the Feynman diagrams contributing to this dual diagram, it is easy to verify that the only 

Feynman diagrams that are relevant are the three given in figure 5. In the given gauge, the calculation 

of these three diagrams is quite easy, and the result is: 

A(l-, 2-, 3+, 4+, 5+) = (2)‘/’ 02)’ 

(12) (23) (34) (45) (51)’ 

From now on I will use the shorthand notation (pipj) = (ij) and I will put CJ = 1. Notice the simplicity 

of this expression: there is just one term left, out of the many hundreds that are generated by the 

Feynman rules. Notice also that the cancellation of the double poles in correspondence of collinear 

gluons is explicit at the amplitude level, as anticipated. The Altarelli-Parisi behaviour of the amplitude 

when two gluons are taken parallel is also explicit in this amplitude, as is easy to check. The origin of 

this behaviour stems from the factorization properties of the dual amplitudes. 
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By using gauge invariance it is straightforward to prove that the amplitudes corresponding to per- 

mutations of (1,2,3,4,5) that mix gluons with the fame. h&city are just obtained by permuting the 

momenta inside the expressi&(6). The other permutations can be obtained by using the dual Ward 

identity (fig.2). The result is: 

A(il,iZ,iS, &is) = (2)'/' WV 
(iliz)(izi3)(i3i4)(iri5)(i5i~) 

Equations (6) and (7) are sufficient to write the full amplitude 45, with the color factors given by the 

Ghan-Paton prescription. It is interesting to note that the sum over colors of the amplitude squared 

can be performed independently of the explicit form of the amplitude. In fact, by just using the dual 

representation of the amplitude (es.(z)) and the dual Ward identity it is possible to verify that: 

.ge lp& tr(X1...Xs)A(I,...,5)]’ = N3’;;- ‘) 1 IA(L...,5)‘Z, (8) 
psrm 

This holds for every expression A(l,. . ., 5) that is invariant under cyclic permutations, changes sign if 

the ordering is reversed, and satisfies the dual Ward identity. The partial sum over permutations that 

reverse the ordering - (1,2,. . , n) -+ (n, n - 1,. . . 1) - is of course trivial, and just gives rise to an 

overall factor of 2. 

By using equations (6) and (7) we can then obtain the standard expression for the amplitude squared: 

gA5(- - + + +v = s:zp~m .9123238:4545& 
The sum over the h&cities can be finally obtained by just replacing the overall factor s$ with Cf,j=, sfj 

(no averaging performed yet). 

I will now move to the six-gluon case [lo]. H ere we have two possible sets of helicities that contribute: 

A(- - + + ++) and A(- - - + ++). The first one is rather trivial, and it is the straightforward 

generalization of the five-gluon amplitude: 

A(1->2->3+,4+,5+,6+) = 8i(12)(23)(~~~~~5)(56)(61)’ 

Different permutations can be obtained as before by keeping fixed the numerator and permuting the 

momenta in the denominator. 

The other amplitude is not as simple. It admits two different representations, one exhibiting the factor- 

ization on the two particle channels (i.e. the Altarelli-Parisi behaviour), and the other one exhibiting 

the factorization on the three particle channels. Here I will give the second one: 

A(1+,2+,3+,4-,5-,6-) = 8i 
(56)(23](1+ ‘i + ++)* 

t;3rS34%.1 (23) 1561 

8i 
+ 

(45)[12](3+ ‘i + i’6tt)’ 

&p34%-1 (12) [451 

Sit123 (l+ li+~1@-)(3+1~+?1]6t-) -- 
%34%1 (12) (23) [451 [=I ’ 

(11) 
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I have used the following notation: tijk = (pi+pj +pk)‘, [ij] = (ij)' and i = pi.7. In this representation 

the cancellation of the redundant poles in the 3-4 and 6-1 channels is not explicit, but can be easily 

verified. Two more helicity configurations are needed: 

A(1+,2+,4-,3+,5-,6-) and A(1+,4-,2+,5-,3+,6-). (l-4 

They can be obtained after some work by using the following Ward identities: 

A(l+, 2+, 3+,4-, 5-, 6-) + A(2+, l+, 3+,4-, 5-,6-) + A(2+, 3+, If, 4-, S-,6-) 

+ A(2+, 3+,4-, I+, 5-,6-) + A(2+,3+,4-,5-, 1+,6-) = 0, (13) 

A(2+,3+,4-,1+,5-,6-)+ A(3+,2+,4-,1+,5-,6-)+A(3+,4-,2+,1+,5-,6-) 

+ A(3+,4-,1+,2+,5-,6-)+A(3+,4-,1+,5-,2+,6-) = 0. (14) 

~~ in the five glunn cake it is possible to perform the sum of the colors in the amplitude squared by 

just using duality and the Ward identities. The result is the following: 

IZIJV = Nz(:i-l) C {N21A(i,2,3,4,5,6)12+ 
pc,??S 

2A’(I,2,3,4,5,6)[A(1,3,5,2,6,4)+A(5,1,3,6,4,2)+A(3,5,1,4,2,6)]}. (15) 

This equation is obviously satisfied by both the helicity amplitudes, A(- -++++) and A(- - -+++). 

Contrarily to the four and five gluon amplitudes, in this case the subleading terms do not vanish. 

However it is possible to show that they will not give rise to collinear singularities. In fact, by bringing 

two gluons parallel, say i and j, the full amplitude will behave as the product of a five gluon amplitude 

times the pole times the proper Altarelli-Parisi function f(z). If the subleading part of the six-gluon 

amplitude were singular in sij, this would give rise to a non-leading contribution to the five-gluon 

process. Since there is no sub-leading term in the five-gluon amplitude, the sub-leading part of equation 

(15) is finite when Sij goes to zero. 

The sum over helicities can also be performed by just using the general properties of the amplitude. 

Let us define: 

A1(1,2,3,4,5,6) = A(l+,2+,3+,4-,5-,6-) 

A2(1,2,3,4,5,6) = A(1+,2+,3-,4+,5-,6-) 

A3(1,2,3,4,5,6) = A(1+,2-,3+,4-,5+,6-). (16) 

It is then easy to check that the sum wer colors and helicities of the square of A(+ + + - --) is given 

by: 

Ixg, IAt+ + + - --)I2 = N2(;;- ‘) aLlgm { Hl(1,2,3,4,5,6)+2Hz(l,2,3,4,5,6) 

+ ~~dW,W,V) h (17) 
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where Hi(1,2,3,4,5,6)is given by the expression within curly bracketsin equation (15), with A(l, 2,. . ., 6) 

replaced by A&,2,..., 6). Notice that now the sum is over all the permutations, both cyclic and non- 

cyclic. 

More details and the complete expression for the six-gluon amplitude will be contained in [l]. 

4 Conclusions 

In conclusion, I have presented what we believe to be a very effective technique for calculating higher 

order processes in perturb&w QCD. Using this technique we have gained a complete analytic control 

of amplitudes with up to six gluons. We do not expect the seven-gluon process to be much more 

complicated, because no new structures in the amplitude will appear until the eight-gluon case. In 

particular, the A(- - + + + + +) amplitudes will be the obvious extension of their five- and six- 

gluon equivalent. A long-term goal would be to find either recursive relations to generate higher point 

functions starting from lower order ones, or to find an alternative set of Feynman rules that embody 

the duality structure. This might follow from a more accurate study of the zero-slope limit of the 

Koba-Nielsen amplitudes. A systematic procedure to take the zero-slope limit before carrying out the 

integrals over the Koba-Nielsen variables will probably be a first step in this direction. 

The extension of this technique to amplitudes with quarks or massive vector bosons is probably a 

closer goal, that we intend to pursue in the next future. 
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